If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=390
We move all terms to the left:
2x^2+4x-(390)=0
a = 2; b = 4; c = -390;
Δ = b2-4ac
Δ = 42-4·2·(-390)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-56}{2*2}=\frac{-60}{4} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+56}{2*2}=\frac{52}{4} =13 $
| --7x=-27+2x | | 28+18n-36+3n^2-12n+12=3n^2+6n+4 | | X-1=7x-1 | | 28=18n-36+3n^2-12n+12=3n^2+6n+4 | | -36+x=8 | | 4m-10=-6m+20 | | 2(x+8)=2x+7 | | −36+x=8 | | 4x^2=13x=4 | | X-6x/7+1/7=0 | | X-6/7x+1/7=0 | | 70=-16.4^2+80t | | (x-14)^2-400=0 | | 2x.3x=36 | | 4/5y+2=2/5y-4 | | (x-14)^2=20^2 | | 4/3x+3/5=-3 | | 16f-1414=9f-7 | | (5+x)3=7 | | 2(x-1)=1/2(4x-2)-1 | | 4(2n+1)=32 | | 14=26−6a | | d*88=-88,000 | | 4.2(w-6.5)=28.8 | | a*3=30 | | 4(2n+1)=32 | | 8(x+1)+4=3(2x–8) | | 7x-3=3x+24 | | 3/4(4x–12)=9 | | 1/5(5x+10)=6 | | 2x+3/4=0.6 | | X^2+2=65+2x |